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Left frontal cortex connectivity underlies
cognitive reserve in prodromal Alzheimer
disease

ABSTRACT

Objective: To test whether higher global functional connectivity of the left frontal cortex (LFC) in
Alzheimer disease (AD) is associated with more years of education (a proxy of cognitive reserve
[CR]) and mitigates the association between AD-related fluorodeoxyglucose (FDG)-PET hypome-
tabolism and episodic memory.

Methods: Forty-four amyloid-PET–positive patients with amnestic mild cognitive impairment
(MCI-Ab1) and 24 amyloid-PET–negative healthy controls (HC) were included. Voxel-based linear
regression analyses were used to test the association between years of education and FDG-PET
in MCI-Ab1, controlled for episodic memory performance. Global LFC (gLFC) connectivity was
computed through seed-based resting-state fMRI correlations between the LFC (seed) and each
voxel in the gray matter. In linear regression analyses, education as a predictor of gLFC connec-
tivity and the interaction of gLFC connectivity 3 FDG-PET hypometabolism on episodic memory
were tested.

Results: FDG-PET metabolism in the precuneus was reduced in MCI-Ab1 compared to HC (p 5

0.028), with stronger reductions observed in MCI-Ab1with more years of education (p5 0.006).
In MCI-Ab1, higher gLFC connectivity was associated with more years of education (p 5 0.021).
At higher levels of gLFC connectivity, the association between precuneus FDG-PET hypometab-
olism and lower memory performance was attenuated (p 5 0.027).

Conclusions: Higher gLFC connectivity is a functional substrate of CR that helps to maintain
episodic memory relatively well in the face of emerging FDG-PET hypometabolism in early-
stage AD. Neurology® 2017;88:1054–1061

GLOSSARY
Ab 5 b-amyloid; AD 5 Alzheimer disease; ADNI5 Alzheimer’s Disease Neuroimaging Initiative; BNT 5 Boston Naming Test;
CR5 cognitive reserve; EPI5 echo-planar imaging; FDG5 fluorodeoxyglucose; gLFC5 global left frontal cortex;GM5 gray
matter; HC 5 healthy controls; LFC 5 left frontal cortex; MCI 5 mild cognitive impairment; MEM 5 episodic memory
composite score; OP 5 occipital pole; ROI 5 region of interest; SUVR 5 standardized uptake value ratio; TMT-B 5 Trail-
Making Test B.

Cognitive reserve (CR) is defined as the ability to maintain cognition relatively well in the
presence of brain pathology1 and is assessed mainly via proxies such as years of education or
IQ. Neuroimaging studies in Alzheimer disease (AD) have shown that higher CR is associated
with exacerbated temporoparietal fluorodeoxyglucose (FDG)-PET hypometabolism at a given
level of cognitive performance,2–4 suggesting that CR allows the patient to better cope with AD
pathology.1,5 The neural mechanisms underlying CR, however, are largely unknown. Previous
resting-state fMRI studies suggest that global functional connectivity of the left frontal cortex
(LFC) might support CR because it is associated with IQ (CR proxy) and cognitive perfor-
mance in young individuals.6 As a major cortical hub within the cognitive control network, the
LFC supports cognitive performance at a task-invariant level,7 which sets it apart from other
task-specific changes that may relate to CR.8–12 Because the LFC is relatively spared in AD,13
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we hypothesized that higher LFC functional
integrity as measured by global LFC (gLFC)
connectivity underlies CR in prodromal AD.
In a first step, we aimed to confirm previous
findings of the ability of patients with AD
with higher CR (education) to maintain
cognitive performance relatively well despite
parietal FDG-PET hypometabolism.2,14 Sec-
ond, we examined whether gLFC connectiv-
ity underlies CR, i.e., the increased ability
to tolerate FDG-PET hypometabolism.
Therefore, we tested whether in patients
with prodromal AD higher gLFC connectiv-
ity is associated with more years of education
(criterion of face validity) and attenuates the
association between FDG-PET hypometabo-
lism and memory impairment (criterion of
cognitive benefit).

METHODS Participants. All participants were recruited

within the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

recruitment phases GO and II) and were selected on the basis of

the availability of AV45-PET scans to assess b-amyloid (Ab)

levels, T1-weighted MRI, resting-state fMRI, FDG-PET, and

cognitive testing. The final sample (see figure 1 for a flowchart)

included 24 healthy controls (HC) and 44 patients with amnestic

mild cognitive impairment (MCI) with elevated Ab levels meeting

research criteria for prodromal AD. MCI was diagnosed according

to the Petersen15 criteria. With the use of pre-established cutoff

values16 applied to the global AV45-PET standardized uptake

value ratio (SUVR), participants were characterized as having

abnormally high amyloid deposition (SUVR $ 1.11, MCI-

Ab1, n 5 44). HC showed normal cognitive performance and

normal AV45-PET SUVR values (SUVR , 1.11, n 5 24). For

details on PET acquisition, see appendix e-1 at Neurology.org.

Standard protocol approvals, registrations, and patient
consents. Ethics approval was obtained by the ADNI investiga-

tors. All study participants provided written informed consent.

Neuropsychological assessment and CR. Episodic memory

was measured through a previously described episodic memory com-

posite score (ADNI-MEM) composite score.17 The ADNI-MEM

score is a weighted factor score based on neuropsychological memory

tests, including the Rey Auditory Verbal Learning Test, the

Alzheimer’s Disease Assessment Scale, the Wechsler Logical

Memory I and II, and the word recall of the Mini-Mental State

Examination. We expanded our analysis of gLFC connectivity on

secondary nonmemory domains, including language function

(Boston Naming Test [BNT]) and executive functions (Trail-

Making Test B [TMT-B]). The TMT-B was chosen because we

previously found this test to be affected early in AD.18 Consistent

with our previous study2 and others (for a review, see reference 19),

we used years of education as a CR proxy. Education is highly

correlated with other CR proxies, including IQ20 or occupational

attainment,21 and is to date the best established CR proxy.19

MRI acquisition.MRI scans were performed on Philips 3TMRI

scanners using an 8-channel coil. T1-weighted images were

acquired with a 3-dimensional magnetization-prepared rapid

gradient-echo sequence, with whole-brain coverage at a voxel

resolution of 1 3 1 3 1.2 mm. Resting-state fMRI images were

acquired with a single-shot T2*-weighted echo-planar imaging

(EPI) sequence in transverse slice orientation (repetition time 5

3,000 milliseconds, flip angle of 808, 3.3-mm isotropic voxel

resolution). Overall, 140 EPI volumes were acquired during

which participants were instructed to keep their eyes open.

Preprocessing of FDG-PET data. Preprocessing was con-

ducted with SPM8 (Wellcome Trust Centre for Neuroimaging,

University College London). Spatial normalization of FDG-

PET images was performed with DARTEL,22 a nonlinear

registration algorithm implemented in SPM8 (for details, see

appendix e-2). All FDG-PET images were subsequently

smoothed (8-mm full-width half-maximum gaussian kernel)

and adjusted to the individual mean signal of the pons and

cerebellar vermis to address interindividual differences.

Preprocessing of resting-state fMRI data. The first 10 EPI

volumes were discarded because of equilibration effects of the mag-

netic field. The remaining 130 volumes were realigned to the first

volume, motion-corrected, registered to T1-weighted images, and

smoothed (6-mm full-width half-maximum gaussian kernel). The

DARTEL flow fields and affine transformation matrix were

combined and applied to the registered EPI volumes for

normalization to Montreal Neurological Institute space. To

remove noise, all spatially normalized EPI images were detrended

and band-pass filtered (0.01–0.08 Hz). Additionally, we regressed

out the 6 motion parameters and the blood oxygen level–

dependent signal averaged across the white matter and CSF.

Assessment of gLFC connectivity. gLFC connectivity was

determined through seed-based functional connectivity following

a previously described protocol.6 The LFC seed (BA 6/44;

Montreal Neurological Institute: x 5 242, y 5 6, z 5 28) was

determined as the peak coordinate of meta-analytically detected

brain activation associated with cognitive control (for further

details, see appendix e-3).23 We created an 8-mm sphere centered

around the LFC coordinate (figure 2A), which was used as a seed

for subsequent connectivity analyses. Using voxel-wise one-sample t
tests, we explored the pattern of significant (p , 0.001) positive

LFC functional connectivity in MCI-Ab1, which was found

preferentially, although not exclusively, to frontoparietal brain

Figure 1 Participant selection flowchart

*Excluded because of excessive motion or failed segmentation, coregistration, or normali-
zation. Ab 5 b-amyloid; ADNI 5 Alzheimer’s Disease Neuroimaging Initiative; FDG 5 fluoro-
deoxyglucose; HC 5 healthy controls; MCI 5 mild cognitive impairment.
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areas belonging to the cognitive control network (figure 2B). For

the assessment of gLFC connectivity, the LFC region of interest

(ROI) was superimposed onto the preprocessed and gray matter

(GM)–masked resting-state scans to extract the mean LFC time

series. Next, we calculated the Pearson-moment correlations

between the LFC time series and each GM voxel. The resulting

voxel-based correlations were Fisher z-transformed, and all positive

voxel values were averaged to yield gLFC connectivity for each

participant.6,24 The gLFC connectivity values were log-

transformed and centered to achieve a gaussian distribution.

Global connectivity was further assessed for 2 control ROIs

(occipital pole [OP] and precuneus) to test the specificity of the

LFC as a substrate of CR (for details, see appendix e-4).

Statistical analysis. Continuous measures of demographics were

compared between groups with 2-sample t tests; sex was compared

with a x2 test. To test whether more years of education allow the

patient to cope better with FDG-PET hypometabolism in MCI-

Ab1,2 we applied voxel-wise regression including FDG-PET as the

dependent variable and years of education (CR proxy) as the

independent variable, controlling for age, sex, and ADNI-MEM.

The voxel-wise analysis was restricted to the group-specific GM

mask, and the resulting t statistics map was thresholded at the

voxel level at a 5 0.01 and corrected at the cluster level at a 5

0.01. The FDG-PET value averaged across voxels within clusters of

significant effects of education (a single cluster within the left

precuneus; see Results) was computed for each participant and

used as a marker of FDG-PET hypometabolism in MCI-Ab1 in

the subsequent analyses. In addition, the mean FDG-PET

metabolism in the precuneus was extracted in HC. To test

whether precuneus FDG-PET was decreased in MCI-Ab1, we

conducted an analysis of covariance, with group (HC vs MCI-

Ab1) as the predictor, controlling for age and sex. For testing our

first hypothesis, i.e., that higher gLFC connectivity is associated with

more years of education in MCI-Ab1, we used linear regression

analysis including gLFC connectivity as the dependent variable and

education, age, and sex as independent variables. For testing our

second hypothesis, i.e., that higher gLFC connectivity attenuates

the association between FDG-PET hypometabolism and episodic

memory impairment, we tested in a linear regression analysis the

interaction of gLFC connectivity 3 FDG-PET (precuneus cluster)

on ADNI-MEM, controlled for age and sex in MCI-Ab1. Because

our second hypothesis clearly specifies a directionality of the effects,

i.e., detriments in memory performance associated with FDG-PET

hypometabolism are worse at lower compared to higher levels of

gLFC connectivity, we applied a one-tailed significance threshold

to test this hypotheses (p , 0.05). Hypothesis 2 was also tested for

secondary cognitive outcome measures, including BNT and

TMT-B. To test the specificity of the gLFC connectivity as

a substrate of CR, we conducted control analyses testing global

connectivity of the OP and precuneus instead of the LFC. To this

end, all regression analyses were repeated in an analogous way, this

time replacing gLFC connectivity by global connectivity of the OP

or precuneus. For each regression model, gaussianity of the

distribution of the residuals was tested with the Shapiro-Wilk test,

where none of the models showed significant deviation (a 5 0.05).

The variance inflation factor was ,10 for all models tested,

indicating that there was no multicollinearity among predictors.

Voxel-wise regression analyses were computed with SPM8. Fur-

ther analyses were computed with the R statistical software package

(r-project.org).25 Regression parameters of log-transformed regressors

were back-transformed to ensure interpretability.

RESULTS Descriptive statistics for each group are
displayed in the table. Two-sample t tests showed
that HC performed significantly better than MCI-
Ab1 on all cognitive measures.

Association between years of education and FDG-PET in

MCI-Ab1. Voxel-wise multiple regression analysis of
FDG-PET data showed that more years of education
were associated with lower FDG-PET metabolism
within a single cluster within the left precuneus
(B 5 20.025, SE 5 0.006, t [39] 5 2.43, p 5

0.006), controlled for ADNI-MEM, age, and sex
(figure 3A). The association between education and
the average FDG-PET within the precuneus cluster
is plotted in figure 3B.

Results of the analysis of covariance showed that
FDG-PETwithin the precuneus cluster was significantly

Figure 2 Meta-analysis of brain activation related to cognitive control

(A) Meta-analytical map of activation peaks across task fMRI studies that were associated
with cognitive control (false discovery rate corrected at p , 0.01). Colors indicate z scores.
Superimposed in blue is an 8-mm spherical region of interest (ROI) centered around the peak
voxel of the left frontal cortex (LFC) cluster of the z map. The ROI was used as the seed
region in the seed-based functional connectivity analysis to obtain global LFC connectivity in
the resting-state fMRI scans. (B) Spatial pattern of positive LFC seed-based connectivity
(t test against zero p, 0.001, family-wise error corrected at the cluster threshold p, 0.05).
The analysis was restricted to voxels falling within the graymatter mask. ADNI5Alzheimer’s
Disease Neuroimaging Initiative; MCI 5 mild cognitive impairment.
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reduced in the MCI-Ab1 compared to HC (F62 5

5.056, p 5 0.028), controlled for age and sex (figure
3C), suggesting that precuneus FDG-PET was patho-
logically reduced in MCI-Ab1.

Association among gLFC connectivity, education, and

precuneus FDG-PET in MCI-Ab1. Next, we tested our
hypothesis that gLFC connectivity is associated with
more years of education (CR proxy) in MCI-Ab1
(criterion of face validity). More years of education
predicted higher gLFC connectivity, controlled for
age and sex in the MCI-Ab1 (B 5 0.07, SE 5

0.03, t [40] 5 2.401, p 5 0.021; figure 4A) but not
in HC (p 5 0.49). gLFC connectivity was not associ-
ated with precuneus FDG-PET metabolism in HC
(p 5 0.25) or MCI-Ab1 participants (p 5 0.12).

Addressing ourmain hypothesis, we assessed whether
higher gLFC connectivity is associated with an attenu-
ated effect of precuneus FDG-PET hypometabolism
on memory in MCI-Ab1 (criterion of cognitive
benefit). The interaction effect gLFC connectivity 3

precuneus FDG-PET on ADNI-MEM was significant
(B 5 210.43, SE 5 2.62, t [38] 5 21.988, p 5

0.027, hypothesis-free 2-tailed p 5 0.054). Figure 4B
shows that at low levels of gLFC connectivity, lower
precuneus FDG-PET metabolism was associated with
worse memory performance, whereas at higher levels of
gLFC connectivity, the association between precuneus
FDG-PET metabolism and ADNI-MEM was not
observed. These results suggest that in the presence of
higher gLFC connectivity, the detrimental effect of AD-
related precuneus FDG-PET hypometabolism on
memory is reduced. We detected no significant interac-
tion effects on secondary cognitive measures, including
BNT (p 5 0.78) and TMT-B (p 5 0.12). Control

Table Demographics and neuropsychological
characteristics of HC and MCI-Ab1
participants

HC MCI-Ab1

Sample size, n 24 44

Age, y 74.6 (6.4) 72.4 (6.5)

Sex, F/M 18/6 26/18

Education, y 15.8 (2.1) 16.1 (2.6)

ADNI-MEMa 0.82 (0.5) 0.2 (0.5)

MMSEa 28.9 (1.3) 27.4 (1.7)

BNTa 28.8 (1.3) 26.7 (3.8)

TMT-Bb 78.5 (43.1) 107.5 (59.0)

Abbreviations: ADNI-MEM 5 Alzheimer’s Disease Neuroi-
maging Initiative episodic memory composite score;
BNT 5 Boston Naming Test; MCI-Ab1 5 amyloid-PET–
positive with amnestic mild cognitive impairment;
MMSE 5 Mini-Mental State Examination; TMT-B 5 Trail
Making Test B.
aHC . MCI (p , 0.05).
bHC , MCI (p , 0.05).

Figure 3 Voxel-wise regression for education
predicting FDG-PET controlling for
memory performance in MCI-Ab1

(A) Location of the precuneus cluster in the left
hemisphere, where amyloid-PET–positive patients with
amnestic mild cognitive impairment (MCI-Ab1) with more
years of education showed lower fluorodeoxyglucose
(FDG)-PET metabolism when controlling for memory
performance, age, and sex (p , 0.01 corrected at the
cluster threshold at p , 0.01). (B) Scatterplot for the
regression model of education on the average precuneus
FDG-PET metabolism in MCI-Ab1. (C) Box plot for the
group comparison (MCI-Ab1 vs healthy controls [HC])
in precuneus FDG-PET metabolism. Precuneus FDG-PET
metabolism was significantly reduced in MCI-Ab1, con-
trolled for age and sex (p 5 0.028).
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analyses including global connectivity of the OP or pre-
cuneus showed no significant associations with educa-
tion (OP p 5 0.34; precuneus p 5 0.51) or precuneus

FDG-PET metabolism (OP p 5 0.33; precuneus p 5
0.23). The interaction effect including ROI global con-
nectivity 3 precuneus FDG-PET metabolism on
ADNI-MEM was significant for none of the control
ROIs (OP p 5 0.58; precuneus p 5 0.67).

DISCUSSION Ourmajor findings were that in prodro-
mal AD, more years of education (CR proxy) allowed
the patient to better cope with precuneus FDG-PET
hypometabolism, higher gLFC connectivity was
associated with more years of education (CR proxy;
criterion of face validity), and higher gLFC
connectivity was associated with milder effects of
precuneus FDG-PET hypometabolism on memory
performance (criterion of cognitive benefit). Together,
these findings suggest that higher gLFC connectivity
met major a priori defined criteria as a substrate of
CR, including the association with a common CR
proxy (education) and a beneficial effect that
moderated the association between AD core pathology
(precuneus FDG-PET hypometabolism) and the
level of memory impairment. No association with
education was found for global functional connectivity
of 2 control ROIs (OP and precuneus), suggesting
that our findings are specific to gLFC connectivity.

First, we showed that in MCI-Ab1 more years of
education were associated with stronger precuneus
FDG-PET hypometabolism when controlling for
memory performance. These findings are consistent
with results of previous studies showing an association
between higher CR proxies and lower parietal FDG-
PET or perfusion in AD,2,5,26,27 providing indirect
evidence for an enhanced ability in patients with
AD with greater education to cope better with brain
pathology than those patients with lower education.

Next, we tested in a series of analyses whether
gLFC connectivity may subserve protective effects
in MCI-Ab1. First, we showed an association
between years of education and gLFC connectivity
(criterion of face validity). This is in agreement with
previous studies in healthy individuals in which more
years of education were associated with increased
frontal lobe function, i.e., higher anterior cingulate
FDG-PET metabolism and fMRI functional connec-
tivity.28 Similarly, more years of education are associ-
ated with higher frontal FDG-PET metabolism in
prodromal AD.3 We found that higher gLFC connec-
tivity was associated with more years of education in
MCI-Ab1 but not in HC. Higher LFC connectivity
is most likely a functional difference associated with
higher education that existed before the onset of
MCI, in line with the idea of neural reserve.29 Ceiling
effects, reduced interindividual variability of gLFC
connectivity in HC, and a small sample size of 24
may have reduced the power to detect an association
between education and gLFC connectivity. We

Figure 4 Scatterplot for the interaction of gLFC
connectivity 3 precuneus FDG-PET
metabolism on memory performance in
MCI-Ab1

Association among education, global left frontal cortex (gLFC)
connectivity, and precuneus fluorodeoxyglucose (FDG)-PET
metabolism in amyloid-PET–positive patients with amnestic
mild cognitive impairment (MCI-Ab1). (A) Scatterplot of the
association between years of education andgLFCconnectivity.
(B) Scatterplot for the interaction gLFC connectivity 3 pre-
cuneus FDG-PET metabolism on memory performance in MCI-
Ab1. Precuneus FDG-PET metabolism is plotted against the
Alzheimer’s Disease Neuroimaging Initiative memory score for
participants with high and low gLFC connectivity. For illustra-
tional purposes, groups of high and low gLFC connectivity
(defined via median split) are plotted separately.
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caution that the primary focus of the current study
was on CR in MCI. gLFC connectivity as a putative
substrate of CR in elderly HC participants should be
assessed in larger future studies.

For our second a priori defined criterion of CR-
related brain differences, we postulated that any puta-
tive brain substrate of CR should be associated with
higher levels of cognitive performance in the face of
brain pathology (criterion of cognitive benefit).30,31

Consistent with this hypothesis, we showed that
gLFC connectivity not only was associated with
a CR proxy (education) but also was beneficial with
regard to memory performance in the presence of
brain pathology (precuneus FDG-PET hypometabo-
lism). Our finding is reminiscent of a previous study
in AD showing that at higher levels of CR (as mea-
sured by IQ), the association between precuneus Ab
deposition and memory impairment was attenu-
ated.32 Our results suggest that gLFC connectivity
may underlie such compensatory effects. Here, we
found an interaction between gLFC connectivity
and precuneus FDG-PET only on memory but not
on secondary cognitive measures, including BNT and
TMT-B. A possible explanation is that deficits in
BNT or TMT-B are related to frontal and temporal
FDG-PET hypometabolism rather than precuneus
FDG-PET hypometabolism, as shown previ-
ously.33,34 Thus, it is possible that FDG-PET hypo-
metabolism in areas other than the precuneus may
have shown an interaction with gLFC connectivity
on these nonmemory domains.

It is unclear how gLFC connectivity may support
cognition in prodromal AD. One possibility is that
because of its widespread connectedness, the LFC in-
teracts with and regulates the activity of functional net-
works. According to the flexible-hub theory, the LFC
shows adaptive functional connectivity to other brain
regions during cognitive processes.35 A recent fMRI
study testing different cognitive tasks showed that the
LFC dynamically shifts connectivity to different net-
works across cognitive tasks.36 Previous resting-state
fMRI studies reported that the LFC is characterized
by a high participation coefficient with regard to its
connectivity to major networks in the brain.37 At the
cognitive level, increased gLFC connectivity was shown
to be associated with increased cognitive control, higher
IQ, and higher cognitive performance in young indi-
viduals.6 Together, these studies suggest that the LFC,
possessing high global connectivity, may flexibly
orchestrate the activation of specific networks during
cognitive tasks and may thus enhance cognitive perfor-
mance. Applied to the current findings, this means that
high gLFC connectivity may be linked to greater flex-
ibility in neural network activation to compensate for
local neurodegeneration (i.e., precuneus FDG-PET hy-
pometabolism) in patients with prodromal AD.

Another possibility is that the LFC exerts a beneficial
effect on cognitive performance particularly through its
association with the frontoparietal control network,
also called the task-positive network.38 Our spatial
mapping of significant LFC connectivity supports par-
ticularly high functional connectivity with frontoparie-
tal brain areas belonging to the control network,
consistent with previous findings.6,7

In cognitively normal elderly with abnormal levels
of amyloid PET, increased activation of the control
network during memory encoding was associated
with increased memory performance.39 These results
suggest that increased frontoparietal activation may
play a compensatory and beneficial role during mem-
ory performance in the early stage of AD. Future
studies may investigate whether, in patients with
AD with high CR, increased gLFC connectivity
may support such increased frontoparietal activation
and thus support cognitive function. While the exact
compensatory mechanism of the LFC needs to be
confirmed in future studies, the current results sug-
gest that the LFC is associated with CR and may
moderate the association between AD pathology
and cognitive impairment.

For the interpretation of the current results, sev-
eral caveats should be considered. First, we examined
gLFC connectivity during resting-state fMRI, which
may not necessarily translate into increased connec-
tivity or activation during cognitive tasks because
the association between connectivity and task-
related brain activation can be complex.40 However,
a previous study showed that during working mem-
ory task fMRI, the LFC connectivity increased in
a task-related manner, suggesting a direct role of
LFC connectivity during task performance.7 We spe-
cifically chose resting-state gLFC connectivity as
a candidate neural marker of CR that can be readily
assessed in patients with cognitive deficits and does
not depend on a particular cognitive task. However,
future studies should assess to what extent gLFC con-
nectivity supports compensatory task-related brain
activation in AD. Second, we examined only MCI-
Ab1 patients in the stage of prodromal AD. Thus,
the generalization to other stages of AD and cognitive
functions remains open. Because in AD the frontal
lobe function is relatively spared until a late stage, the
gLFC connectivity may be a prime candidate to show
a generalized cognitive performance-enhancing func-
tion in AD. Overall, gLFC connectivity is a promising
candidate marker of CR in AD that may play a com-
pensatory and cognitively beneficial role when AD
pathology emerges. The identification of the locus
of functional brain mechanisms related to CR opens
up the possibility to specifically train and stimulate
such brain mechanisms through neurofeedback,
transcranial direct current stimulation, or drugs to
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enhance compensatory brain mechanisms and to slow
down the cognitive decline in AD.
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